An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex
نویسندگان
چکیده
The problem of minimizing a polynomial over the standard simplex is one of the basic NP-hard nonlinear optimization problems — it contains the maximum clique problem in graphs as a special case. It is known that the problem allows a polynomial-time approximation scheme (PTAS) for polynomials of fixed degree, which is based on polynomial evaluations at the points of a sequence of regular grids. In this paper, we provide an alternative proof of the PTAS property. The proof relies on the properties of Bernstein approximation on the simplex. We also refine a known error bound for the scheme for polynomials of degree three. The main contribution of the paper is to provide new insight into the PTAS by establishing precise links with Bernstein approximation and the multinomial distribution.
منابع مشابه
On the complexity of optimization over the standard simplex
We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we derive new results on the computational complexity of approximating the minimum of some classes of functions (including Lipschitz continuous functions) on the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on the simp...
متن کاملA PTAS for the minimization of polynomials of fixed degree over the simplex
Abstract. We consider the problem of computing the minimum value pmin taken by a polynomial p(x) of degree d over the standard simplex ∆. This is an NP-hard problem already for degree d = 2. For any integer k ≥ 1, by minimizing p(x) over the set of rational points in ∆ with denominator k, one obtains a hierarchy of upper bounds p∆(k) converging to pmin as k −→ ∞. These upper approximations are ...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملA PTAS for the minimization of polynomials of fixed degree over the simplex - Extended abstract
One may assume w.l.o.g. that p(x) is a homogeneous polynomial (form). Indeed, as observed in [2], if p(x) = ∑d l=0 pl(x), where pl(x) is homogeneous of degree l, then minimizing p(x) over ∆ is equivalent to minimizing the degree d form p(x) := ∑d l=0 pl(x)( ∑n i=1 xi) . Problem (1) is an NP-hard problem, already for forms of degree d = 2, as it contains the maximum stable set problem. Indeed, f...
متن کاملA refined error analysis for fixed-degree polynomial optimization over the simplex
We consider the problem of minimizing a fixed-degree polynomial over the standard simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we revisit a known upper bound obtained by taking the minimum value on a regular grid, and a known lower bound based on Pólya’s representation theorem....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 151 شماره
صفحات -
تاریخ انتشار 2015